How to cope with the recent challenges in gas transport

4th Conference of the EURO Practitioners’ Forum
Klaus Spreckelsen
Contents

- OGE at a glance
- Recent challenges in gas transport
 1. Natural gas
 2. Hydrogen
 3. Carbon Dioxide
OGE at a glance

2004
Established as Ruhrgas Transport

2010
Renamed Open Grid Europe

One of Europe's leading gas transmission system operators

Some **1,450 employees**
across Germany;
Head office: Kallenbergstraße 5,
45141 Essen, Germany

Sole responsibility for the operation, control, expansion and marketing of the company’s pipeline network

Some **450 German and European customers**
Our pipeline network

Approx. 12,000 km of pipelines

Approx. 30 compressor stations equipped with 100 compressor units with a total capacity of approx. 1 GW

1,008 exit points

17 border-crossing point

Approx. 129 GW annual peak load 2021

2 types of gas shipped: H-gas/L-gas
Our pipeline network 2021

- Main supplier Russia
- Main entry Waidhaus in south-east Germany
- Main transport direction: north-east to south-west
- No German LNG terminals

- Compressor station/field site
- OGE transmission pipeline
- Flow direction
Our pipeline network 2023

- Main supplier Norway
- Waidhaus is now exit
- Main transport direction: north-west to south-east
- German LNG terminals
- New pipeline WAL

- Compressor station/field site
- OGE transmission pipeline
- Flow direction
The War and the WAL

— Wilhelmshavener Anbindungsleitung (WAL) was completed December 2022 in just nine months

— Connects the first German LNG terminal to the OGE network (currently there are three German LNG terminals)

— 26 km, 100 bar, ca. 6 GW, H₂-ready
OGE is going green

We will reduce our greenhouse gas emissions until 2025 compared to 2009 by 45%.

- Very ambitious corporate goal in the current situation due to the war-related changes in gas flows
- ESG* becoming increasingly important

Short-term approach (software)
- Hints for emission-optimized compressor use
- Intelligent user interface for controlling the compressor stations in a target-oriented way

Long-term approach (hardware)
- Transition to hydrogen

ESG: Environmental, social, and corporate governance
GET H2 IPCEI* – Starting signal for European H2 economy

— Start of the hydrogen economy with the production, transportation, storage and supply of green H2 to industry as early as 2025

— By 2030, an H2 network is to be built stretching from Lingen to Gelsenkirchen and from the Dutch border to Salzgitter

— Electrolysis by 2026: 300 MW planned in Lingen and 100 MW in Salzgitter

— Public funding sought as part of the IPCEI programme

*IPCEI: Important Project of Common European Interest
Physical Properties of Natural Gas and Hydrogen

<table>
<thead>
<tr>
<th>Property</th>
<th>Unit</th>
<th>Hydrogen</th>
<th>Norwegian H-Gas</th>
<th>Dutch L-Gas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molar mass</td>
<td>g/mol</td>
<td>2.01</td>
<td>17.8</td>
<td>18.4</td>
</tr>
<tr>
<td>Calorific value</td>
<td>kWh/m³</td>
<td>3.54</td>
<td>11.3</td>
<td>10.2</td>
</tr>
<tr>
<td>Wobbe value</td>
<td>kWh/m³</td>
<td>13.4</td>
<td>14.4</td>
<td>12.8</td>
</tr>
<tr>
<td>Speed of sound*</td>
<td>m/s</td>
<td>1,283</td>
<td>414</td>
<td>409</td>
</tr>
</tbody>
</table>

* At 283.15 K (10 °C) and 1 bar

Source: Prentice-Hall,Inc.
Mixture of Natural Gas and Hydrogen

Natural gas (H-gas) and hydrogen

Ratio energy transport capacity vs. hydrogen content for different pressures:
- 1 bar
- 20 bar
- 40 bar
- 50 bar
- 60 bar
- 80 bar
- 100 bar

Gas temperature: 10° C
Problems with compressing hydrogen

1. Low energy density → more energy needed for compression
2. Low molar mass → more compressor stages needed for compression
Change of the Characteristic Map with Hydrogen

With the compression of hydrogen, the map becomes flatter and wider.

Turbo Compressors versus Piston Compressors

<table>
<thead>
<tr>
<th>Compressor type</th>
<th>Large volume flow</th>
<th>Large pressure ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turbo compressor</td>
<td>✓</td>
<td>✗</td>
</tr>
<tr>
<td>Piston compressor</td>
<td>✗</td>
<td>✓</td>
</tr>
</tbody>
</table>

- Several stages are required for the compression of hydrogen with turbocompressors.
- Piston compressors are very rarely used for natural gas.
Customers need with-in-day flexibility

➢ The H₂ supply from electrolysers is volatile within a day, as it is directly coupled to the generation profiles of renewables

➢ Industrial customers require an exit from the hydrogen grid that is decoupled from the supply profile

➢ Customers want to transport hydrogen (capacity) and operate supply and consumption independently (flexibility)
Czech-German Hydrogen Interconnector: H2 corridor from the North and Baltic Sea via Czechia to southern Germany

Problems:
1. Most of the network can be converted. What is the best order to convert pipelines from natural gas to hydrogen?
2. What is the best way to partition the potential of the network (capacity versus flexibility)?
Long-term Vision and Transformation from Natural Gas to H₂

Joint initiative by Equinor, thyssenkrupp Steel Europe and OGE

— Develop pioneering project to supply energy-intensive industries and later on other end users with large quantities of climate-friendly hydrogen produced in the Netherlands.

— Initial customer for hydrogen will be the new direct reduction plants and planned activities of thyssenkrupp Steel Europe in Duisburg by end of 2026.

— Transporting both hydrogen and carbon dioxide
Carbon Dioxide CO_2

Produced by

1. burning organic material
2. chemical processes, especially producing cement: $\text{CaCO}_3 \rightarrow \text{CaO} + \text{CO}_2$

CO₂ Infrastructure: One Component for Climate Neutrality

The idea
— Construction of a CO₂ transport infrastructure
— Offer to the industry to tackle the last building block to climate neutrality: Climate-neutral handling of CO₂
— Network is open to all market participants

OGE
— Construction and operation of an initially approx. 1,000 km long transport infrastructure with a potential transport volume of 18 million t CO₂ per year
— First stage: One exit, several entries, no cycles, therefore the flow is known at every edge
— Main problem: optimization of diameters
CO₂ Modelling

The transport of carbon dioxide near the critical point results in several problems

Modelling problems: All relevant physical quantities depend non-linearly on each other.

Operational problems: You must not cross the boiling curve!

COCOS: CO2 Configuration and Simulation Tool

Optimal (minimal) diameters for a given network with accurate consideration of fluid properties

Possible enhancements:
1. Gas mixtures
2. Multi-scenario optimization with flows in different directions (exits)
3. Optimizing of pump power and pump locations
We enable energy supply. Today and in the energy mix of the future.