

EURO Practitioners' Forum 4th Annual Conference April 20, 2023

OR challenges related to the electricity system transition: a glance at some latest modelling and solving advances

EDF GROUP : KEY FIGURES

Our generation mix by sector (in TWh, 2021) (1)

€85 billions revenue 167 000 Salariés

2nd in the world as Electricity Utility

World leader in CARBON FREE ELECTRICITY

1.N°1 in the world for nuclear energy 2.N°1 in Europe for renewable energy

3.N°3 in Europe for energy services

All EDF Activities related to ELECTRICITY

- **1.**Power generation
- 2.Power grid

3.Supply grid

4.Trading

5.Energy services

« to build a net zero energy future with electricity and innovative solutions and services, to help save the planet and drive wellbeing and economic development. »

Ĉ

By 2023, achieve:

- 30% market share for the supply of electricity in France, the UK, Italy and Belgium
- 150,000 charging stations in Europe
- 10,000 smart charging stations

By 2035, develop:

 10 GW of new storage capacity worldwide

By 2030:

 1 million off-grid kits in portfolio

444
Solar
Plan

Ш

By 2035, be:

- the leader in photovoltaic energy in France
 targeting a 30%
- market share

For the nuclear sector:

 strive for excellence so it continues to play its full role in decarbonising energy

Improve EDF Group performance

in all of its current ventures and enable its customers to benefit.

AIMS OF R&D

Prepare for the energy scenarios of the future by working on disruptive technologies.

Carry out **research for external commissioning bodies** within the framework of partnerships or orders.

R&D IN FIGURES

11 pétaflops of computing capacity

EDF R&D SCIENTIFIC PLAN 2021-2024

Reversion of the second second

010011

Consumer knowledge Electrotechnology Data Science Economy Telecommunications / Industrial data processing Polymer / Corrosion chemistry **Environment / Waste Energy efficiency** High-power electricity Scientific computing Data processing - virtual reality / Augmented reality **Civil engineering** Applied mathematics IT / Telecom **Fluid mechanics Mechanics** Neutronics technology Cycle / Fuel physics Mathematics / Physics / Computing Intellectual property Materials science metallurgy Thermal-hydraulics and simulation

Content

1.The energy transition and the electricity system

2. Modelling the european electricity system **3.**Case studiy: how residential flexibility can help the electricity system

The energy transition and the electricity system

The European Energy Transition

Criteria for the European Energy

2050 EU's carbon reduction targets \Rightarrow High share of Renewable Energy

System in 2050:

✓ Sustainability

✓ Security of supply

✓Competitiveness

At least 40% RES-E in 2030

55% Reduction in GHG emission in 2030, 95% in 2050

Energy efficiency: 11.7% reduction in final energy consumption in 2030

Source: Decarbonization Project Team; http://www.electricitymap.org/

Major changes of the European Energy transition

Objective: max +1.5 or 2 °C in 2050

- \Rightarrow Emissions in 2030 must be 1/3 of today's level
- \Rightarrow Phase out of fossil energies
- \Rightarrow ~1/2 residential and commercial Heating must convert to Heat Pumps in 2035
- \Rightarrow ~1/2 passenger transport must convert from traditionnal fuel
- \Rightarrow High energy efficiency measures are necessary to decrease the final energy consumption

\Rightarrow High increase of the electricity share

Energy transition scenarios – the openEntrance project

open ENTRANCE

Aim: to develop, apply and disseminate an open, transparent and integrated modelling platform designed to assess low-carbon transition pathways in Europe

Energy transition scenarios

4 scenarios 2018-2050

- Directed Transition
 - Strong policy push
- Societal Commitment
 - Willingness of society
- Techno-Friendly
 - High technological progress

Strong active policy push Strong incentive-based policies

- Gradual Development
 - Little of everything

ness and activism

Climate awareness and activism Smart services and circular economy Bottom-up societal revolution

Smart Society

Technology Novelty

Technology disruption and breakthroughs Zero emission technology achievements Top-down technology revolution

Energy transition scenarios – Primary Energy

Energy transition scenarios – Electricity

The future power system will require more flexibility....

Photovoltaic generation forecast on 4 typical days, 40 climatic scenarios Source: EU project C3S Energy, Copernicus North New York Abril 2 102-102-103-103-

edr

An increased Need for flexibility

Modelling the european electricity system

The plan4res modelling suite

The plan4res project

plan4res: Synergistic approach of Multi-Energy Models for a European Optimal Energy System Management Tool

The plan4res project

Implement models and tools that provide an integrated energy system representation able to optimize and simulate expansion and operation with a high share of Renewable Energy

For contributing to European targets for reduction of emissions while maintaining high quality of supply at lowest cost

Integrated modelling of the electricity system

An end-to-end planning and operation tool, composed of a set of optimization models based on an integrated modelling of the pan-European Energy System

- Investment layer: Determine investment decisions
- Scenario valuation: Evalute investment decisions/operational planning
- Analysis/additional tools: Impact of scenario on electricity & gas grid

The plan4res electricity system modelling suite

a Stochastic Power System model composed of 3 embedded layers:

The Capacity expansion model computes the optimal mix on a given year

- ✓ electric generation plants,
- ✓ Short term storages (batteries....),
- \checkmark interconnection capacities

The seasonal storage valuation model computes the optimal strategy for seasonal storages

✓ For Hydro reservoirs

✓ And also all other 'seasonal' flexibilities such as Seasonal Demand response

The European unit commitment (EUC) model computes the optimal dispatch:

- ✓ Supply power demand and ancillary services
- \checkmark Minimal inertia in the system
- ✓ Maximum transmission and distribution capacities between clusters
- ✓ Technical (including dynamic) constraints of all assets

Main characteristics

Adaptable Geography perimeter

- Europe or lower perimeter
- Subcountry representation is possible

Uncertainties:

- Electricity demand
- RES profiles (PV, Wind, RoR...)
- Inflows
- Failures

edf

Modular Time horizon and granularity

Typically 1 yr. with hourly granularity

Modular Grid

Power plants

- Operational decision of power plants based on their specific fuel costs
- Technical constraints (ramping, min up-/downtimes,...)

Storages

- Hydro storages including complex cascaded systems
- Battery storages

Intermittent generation

Generation of wind, solar, run of river based on meteorological profiles

E-mobility

- Storage capability of electric vehicles (vehicle-togrid, power-to-vehicle)
- Limitation of storage availability by driving profiles

Demand Response

- Load shifting of a given energy consumption during a sub-period
- Load curtailment based on a given potential (e.g. during one year)

Thermal power plants

Constraints

- Minimum and maximum power
- Ramping rate limits
- Minimum up and down times
- Simple constraints between active power and reserves

Cost functions

- Convex quadratic or piecewise linear (cutting plane model)
- Start up costs

Intermittent Generation

Constraints

- Maximum power depending on uncertainty scenarios
- Ramping rate limits
- Simple constraints between active power and reserves

□Cost functions

Inear

Seasonal storage

Constraints

- Minimum and maximum volume of the reservoir
- Minimum and maximum power injections
- For each turbine, minimum and maximum ow rate of water
- Power is given as a function of ow rate by a concave cutting plane model
- Ramping rate limits on ow rates
- Simple constraints between active power and reserves
- Valleys can be modeled
 - Valley are modeled as a graph with arcs connecting the reservoirsFor each arc, uphill and downhill ow delays
- Cost functions are provided by the Seasonal Storage Valuation (SSV) as a Cutting plan model

Short term storage

Constraints

- Minimum and maximum volume of the storage
- Minimum and maximum injected power into the grid
- Ramping rate limits
- Potentially different injection and withdrawing efficiency ratio
- Simple constraints between active power and reserves
- Cost functions
 - Linear costs

Demand response

- Load shifting (Ex: Appliances with fixed energy needs on a given period allowing some flexibility on the load prole e.g. EV battery)
 - Data: a reference consumption signal with a given energy consumption on a given period
 - The flexible prole (to be optimally chosen) should
 - > in terms of energy: consume the same energy as the reference prole on the given period
 - > in terms power: not deviate to much from the reference prole
- Load curtailment Ex: Mid-term contracts (for instance annual contracts) between utilities and consumers, where each consumer agrees to reduce his consumption when this is required by the utility
 - Energy storage that can be optimized over the whole mid-term horizon as a seasonal storage

edf

Sedf

Modelling load shifting

Sedf

Optimisation problems

The Capacity expansion model computes the optimal mix:

- ✓ electric generation plants,
- ✓ storages,
- ✓ interconnection capacities between clusters
- ✓ distribution grid capacities,

The seasonal storage valuation model computes the operation strategies for seasonal storages:

✓ For Hydro reservoirs

 ✓ And also all other 'seasonal' flexibilities such as Demand response

The European unit commitment model

computes the optimal operation schedule for all the assets dealing with constraints:

- ✓ Supply power demand and ancillary services
- \checkmark Minimal inertia in the system
- Maximum transmission and distribution capacities between clusters
- \checkmark Technical constraints of all assets

Unit Commitment

Compute dispatch for all assets on a short-term horizon (eg. 1 week)

$$\min \sum_{i} C_{i}^{op}(p_{:,i}, p_{:,i}^{pr}, p_{:,i}^{sc}) + \alpha(v^{hy})$$

 C_i^{op} : Operational costs of unit *i* subject to it's operational variables $p_{t,i}, p_{t,i}^{pr}, p_{t,i}^{sc}$: Provision of power, primary/secondary reserve by unit *i* in timestep *t* submitted to dynamic constraints α : Approximation of the value of seasonal storages v^{hy} : Storage level

The Capacity expansion model computes the optimal mix:

- ✓ electric generation plants,
- ✓ storages,
- ✓ interconnection capacities between clusters
- ✓ distribution grid capacities,

The seasonal storage valuation model computes the operation strategies for seasonal storages:

✓ For Hydro reservoirs

 ✓ And also all other 'seasonal' flexibilities such as Demand response

The European unit commitment model

computes the optimal operation schedule for all the assets dealing with constraints:

- ✓ Supply power demand and ancillary services
- \checkmark Minimal inertia in the system
- Maximum transmission and distribution capacities between clusters
- \checkmark Technical constraints of all assets

Seasonal Storage Valuation

Compute strategies for managing seasonal storage on a mid-term horizon (eg 1 year)

$$C^{op}(\kappa) = \min_{x \in \mathcal{M}} \mathbb{E}\left[\sum_{s \in S} C_s(x_s)\right]$$

C^{op}(κ): Operational costs depending on investment decisions κ
C_s: Operational costs on sub-period s
M: Feasible set associated with operation decisions
Set of sub-periods (e.g. weeks)
x: Operation decisions on sub-period s
κ: Investment decisions taken by capacity expansion model

The Capacity expansion model computes the optimal mix:

- ✓ electric generation plants,
- ✓ storages,
- ✓ interconnection capacities between clusters
- ✓ distribution grid capacities,

The seasonal storage valuation model computes the operation strategies for seasonal storages:

✓ For Hydro reservoirs

 ✓ And also all other 'seasonal' flexibilities such as Demand response

The European unit commitment model

computes the optimal operation schedule for all the assets dealing with constraints:

- ✓ Supply power demand and ancillary services
- \checkmark Minimal inertia in the system
- Maximum transmission and distribution capacities between clusters
- \checkmark Technical constraints of all assets

Capacity Expansion

Design the optimal generation, transmission and distribution mix for a given long-term horizon (eg. 2050)

$$\min_{\kappa} \left\{ C^{inv}(\kappa) + \min_{\eta \in \Upsilon} C^{op}(\kappa, \eta) \right\}$$

κ: Investment decisions (generation assets, transmission)
Y: Set of uncertainty scenarios
C^{inv}: Costs induced by installing capacitiy κ
C^{op}: Expected operational costs with given capacity κ

Modelling with

Modelling with SMS++

- SMS++ is a set of C++ classes implementing a modelling system that:
- allows exploiting specialised solvers
- manages all types of dynamic changes in the model
- Explicitly handles reformulation/restriction/relaxation
- does parallel from the start
- should be able to deal with almost anything (bilevel, PDE,..)
- Includes specialized blocks for energy system modelling

Modelling with SMS++

Nested decompositions at different time horizons

• Schedule a set of generating units to satisfy the demand at each node of the transmission network at each time instant of the horizon (24h)

- Several types of almost independent blocks + linking constraints
- Perfect structure for Lagrangian relaxation^{1,2}

• Manage water levels in reservoirs considering uncertainties (inflows, temperatures, demands, ...) to minimize costs over the time horizon

- Very large size, nested structure
- Perfect structure for Stochastic Dual Dynamic Programming^{3,4} with multiple EUC inside

Pereira, Pinto "Multi-stage stochastic optimization applied to energy planning" *Math. Prog.*, 1991 van-Ackooij, Warin "On conditional cuts for Stochastic Dual Dynamic Programming" arXiv:1704.06205, 2017

Source: A. Frangioni, Uni Pisa

Borghetti, F., Lacalandra, Nucci "Lagrangian Heuristics Based on Disaggregated Bundle Methods [...]", IEEE TPWRS, 2003
Scuzziato, Finardi, F. "Comparing Spatial and Scenario Decomposition for Stochastic [...]" IEEE Trans. Sust. En., 2018

The Seasonal Storage Valuation and Unit Commitment in SMS++

SCIP / Bundle Solver

Case Study: what is the value of residential load shifting for the electricity system?

➢ What is the potential flexibility from demand response from household consumers taking into account the willingness of the population?

➢ Which impact on the integrated European electricity system operation and cost?

Can it reduce investment needs?

Load shifting potentials

Demand Response in household electricity use: participation rates

edf

Household demand response reduces the operation costs by ~1% (2.5% with 100% participation) (average on 40 climatic scenarios, 2050)

Household demand response reduces Marginal Costs Peaks and dispersion

Household demand response reduces PhotoVoltaic generation curtailment

Household demand response reduces the need for battery storage and traditional power generation

https://zenodo.org/communities/plan4res

https://gitlab.com/smspp/smspp-project

https://zenodo.org/communities/openentrance

www.openentrance.eu

www.plan4res.eu

Sedf

Thank you