Mixed-integer linear programming models to optimize
residential demand response to dynamic tariffs

Realos

R @ F:Nnesc

'f‘ CIENCIAS E TECNOLOGIA
2 oA 'Ri 9 0 UNIVERSIDADE B
COIMBRA === %7 ®o
'an@

University of Coimbra /

Carlos Henggeler Antunes and Maria Jodo Alves
INESC Coimbra and CeBER

4th Conference of the EURO Practitioners’ Forum, Berlin, 20-21 April 2023




INTRODUCTION — Consumption flexibility

O Retail companies procure electricity in wholesale markets and offer
flat or (slightly variable) tariffs to their residential customers.

o These tariffs do not convey price signals reflecting generation costs
and grid conditions = consumers do not have sufficient incentives to
adopt consumption patterns different from habitual behaviors.

o Flexibility regarding time of operation of some end-use loads
" improves the system overall efficiency,

" lowers peak generation costs,

* facilitates the penetration of renewable sources,

" reduces network losses,

while offering consumers economic benefits.



says National Grid

Winter electricity blackouts risk recedes,

INTRODUCTION — Demand as a manageable resource
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Timing Is Everything When It Comes To Your
Future Electricity Bill

By Stephanie Joyce, Wyoming Public Radio | March 3, 2016

Historically, electriaity pricing has been relatively straightforward: the more you use, the more you
pay. But today, that simple equation is not so simple. Increasingly, the time of day when you use

electricity factors into the cost as well.



INTRODUCTION — Time-of-Use (TolU) tariffs

o Time-differentiated retail tariffs are expected to become a
common tariff scheme in smart grids.

o Dynamic time-of-use (ToU) tariffs will motivate consumers to
engage in different consumption patterns 2 making the most of the
flexibility in the operation of some appliances through demand
response actions affecting the provision of energy services.
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INTRODUCTION — Appliance control for demand response
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INTRODUCTION — EMS for demand response

o Consumers receive tariff information some time in advance (e.g.,

one day) and respond by scheduling load operation [shiftable and

interruptible loads] and changing thermostat settings [air
conditioning systems].

o Trading-off electricity bill (to profit from periods of low energy
prices) and comfort (associated with appliance operation according
to preferences and requirements).

Autonomous home energy management
systems working behind the meter to

make the integrated optimization of all
energy resources




APPLIANCE CONTROL — SHIFTABLE LOADS
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APPLIANCE CONTROL — INTERRUPTIBLE LOADS (EWH, EV)
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instant
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APPLIANCE CONTROL — EWH AS A THERMOSTATIC LOAD

EWH as a thermostatic-controlled load (instead of interruptible load)

piosses = AU (zp, —tf™) , t=1,..,T

R losses
M-m¢ m¢ P?vg—P,
. Tt + . net) + t

T = T At ,t=0,..,T—1
t+1 ( M M cP
T, = T — My, , t=1,..,T
v;= on/off control of the heating element in
TtSTmax+M(1—vt) ) t=1,,T .
time

T-t"%+1
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=1 T+= hot water temperature inside the tank in

(req time t (°C)

T = Z ™ n,_p,  , t=1,..,T ng= binary variable equal to 1 in the first t in

'<t)
n€{01} , t=1,.,T ’ {7%%€5= power losses through the envelope in
time t (kW)
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APPLIANCE CONTROL — AIR CONDITIONER SYSTEM (1)
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MILP implementation of a rule-based system
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Air conditioner in heating mode

sft =1

if the AC is operating in instant t
The AC is on when the indoor temp. is
below the minimum temp., and it is off
when the indoor temp. is above the
maximum allowed temp.

The AC keeps the state on or off when the
indoor temp. is between the lower and the

upper bound of the thermostat deadband
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APPLIANCE CONTROL — AIR CONDITIONER SYSTEM (2)

leef gmax Htin

Exploiting the consumer’s willingness to trade-off some discomfort with
profiting from lower price periods = the minimum indoor temp. for which the
system should turn on is a decision variable

prn — greS = 5 — &, t=1,..,T in
gminABS _ gmin < gmas L 0;,""" = thermostat lower bound (°C)
= < < t=1,..
—_ t —_ ) ) )
57,84 >0 =1 T 87,0, = temp. deviations of the minimum

temp. below /above the reference temp. (°C)

- higher computation effort
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P?H p¢

Exp = Exeo1 + (nSh PH?* Ar) — (W) , tET, ,x € BV}

EMn < E, . < EoX , t€Ty ,x €{B,V}
0 < pH2x < peh-max ghzx e T, x €{B,V}
0 < px2H < pdeh-max ox2H ¢+ e T, x € {B,V}

sH2x 4 s¥2H <1 ,tET, ,x €{B,V}

req . req
Epr = E;®; Eyy, > Ey

sH2x sX2H € 10,1} , t€T,,x €{BV}

APPLIANCE CONTROL — STATIONARY AND EV BATTERIES

x € {B,V}

PX?H At = energy transferred from the
battery x to home (B2H or V2H) in time ¢
(battery discharge)

PtHzxAt = energy transferred from the
home to the battery x (H2B or H2V) in
time t (battery charge)

E, + = energy (kWh) in the battery X in
time t

sH2X = binary variables equal to 1 when
the battery x is charging in time ¢
s¥*H = binary variables equal to 1 when

the battery x is discharging in time ¢
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POWER COST COMPONENT
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OVERALL MODEL
OBJECTIVE FUNCTIONS: MIN COST, MIN DISCOMFORT

Cost: of the energy consumed by all types of loads + power cost —
revenue of selling back to the grid:

T L
PGZI!IniIFI,HZG f = Z[(Ctbuy PtGZH At) _ (Cfs‘ell PLHZG At)] + Z(CICOnt ulCont)
’ t=1 =1

energy cost - revenue + power cost

Discomfort: Penalizing positive and negative deviations (6; , §; ) of

the thermostat lower bound, 87", to the reference temperature 87¢/

min Z(c+5t+ +¢c767) [heating mode: ¢~ > ¢™]
teT
Additional constraints:
- balance of exchanges grid to home (G2H) and home to grid (H2G)

- battery charge / discharge 14



Power required:

SHIFTABLE APPLIANCES Dishwasher

Laundry machine
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2000

Comfort time slots allowed for the fggg -_
operation of shiftable appliances:

Clothes dryer [76, 96]

Laundry machine [28,58]
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INTERRUPTIBLE APPLIANCES

Energy required to provide the service:

Electric vehicle
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Comfort time slots for the operation of interruptible appliances: :
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PARAMETERS OF THE THERMOSTATIC LOAD (AC)

gmax [ X}t)gn gre f 0 (i)n P,le(,gm S
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Base load: .

1200
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Power (W)
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BASE LOAD AND TOU TARIFFS

Non-controllable base load

Y P _
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Electricity Prices:

Price (€/KWh)

Time (quarter-hour)

Prices
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RESULTS MODEL 1 (bi-objective, without batteries and not selling back
to the grid)

Discomfort vs. Cost

0> ps cost of shiftable loads: 0.4701
interruptible loads: 2.405
0.45 .. AC: 1.6834 ; Power: 0.2834
0.4
o
035 cost of shiftable loads: 0.4701
P interruptible loads: 2.405
£ 03 AC: 1.7495 ; Power: 0.3492
o]
(Wl
£ &
5 025
2 °
QO o2
0.15 Y
01 ® cost of shiftable loads: 0.4701
' PY interruptible loads: 2.405
o AC: 2.315 ; Power: 0.3492
0.05
o
0 ® &
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Cost
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RESULTS MODEL 1

Discomfort
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Discomfort vs. Cost

Prosumer more concerned with cost

Cost

5.9

“Balanced” prosumer

Prosumer more concerned with comfort
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RESULTS MODEL 1
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RESULTS MODEL 1
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Cost

cost of shiftable loads: 0.4701

AC: 1.7495 ; Power: 0.3492

5.9

interruptible loads: 2.405

< weighted-sum with equal weights
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5000

Power (W)
g 3
o o
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o

1000

Load diagram:

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93
Time (quarter-hour)

M air conditioner
M Electric vehicle
EEWH

M Clothes dryer
M Laundry

m Dishwasher

O base load
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Discomfort
2 o 2
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o
s
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RESULTS MODEL 1
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Cost

cost of shiftable loads: 0.4701
interruptible loads: 2.405
AC: 1.7495 ; Power: 0.3492
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6.1

AC On/Off

< weighted-sum with equal weights

Air conditioner operation and temperatures:
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EWAC -On/off

—Ref.Temp

—Indoor Temp

Outdoor Temp
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AC On/Off

Minimum cost solution:

1 5 9 131721252933374145495357 61656973 7781858993

Time (quarter-hour)

B AC -On/off ===Ref.Temp =—=——Indoor Temp

QOutdoor Temp

[N
[N

2]
Temperature (2C)

[N

4

AC On/Off

EXTREME NONDOMINATED SOLUTIONS:
AIR CONDITIONER AND TEMPERATURES

Minimum discomfort solution:

[E
[N

Temperature (2C)

6
4

1 5 9 13172125293337414549 5357616569 737781858993

Time (quarter-hour)

B AC -On/off =——Ref.Temp =——Indoor Temp

Outdoor Temp
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Battery charge (Wh)
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MODEL 2 (min cost with batteries and changes with the grid)
EVOLUTION OF BATTERY CHARGE AND G2H / H2G FLOWS

—Static battery charge

—EV battery charge
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COMPUTATIONAL DIFFICULTIES

Shiftable and interruptible loads are easily dealt with by the solver.
The control of the AC system imposes a significant computational effort.

The MIP gap increases with the weight assigned to the discomfort objective in the
bi-objective problem =2 1% ~ 9% with a computational budget of 60 sec.

Computational budget of 5 min.: gap ~4-5%

Gap vs. weight of discomfort OF (f2) - 60 sec.

10.00%

9.00% o
8.00% °
7.00% .

6.00%

5.00%

4.00% ®
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2.00% ®
100% @ ® ® e @ ®

0.00%



PRACTICAL IMPLEMENTATION OF HEMS

Home energy management system (HEMS) parameterized with the consumer’s
preferences, with communication capabilities to receive grid information (prices
and other signals) and control appliances.

Raspberry Pi 3+ : Broadcom BCM2837B0 SoC 1.4 GHz 64-bit quad-core ARM
Cortex-AS53 processor, 512 KB shared L2 cache

Several OS can be installed in a MicroSD,
MiniSD or SD card, depending on the
motherboard and adapters available

Raspbian, Debian-based Linux
distribution, and third-party Ubunty,
Windows 10 loT Core, RISC OS

Size: 85.60 mm X 56.5 mm X 17[90] mm

$35: low-cost solution
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CONCLUSIONS

o Dynamic (ToU) tariffs provide price signal incentives for consumers
to engage in demand response by means of HEMS.

o Bi-objective MILP model to optimize demand response in face of
dynamic tariffs =2 minimization of energy costs and minimization of
the discomfort associated with changes regarding most preferred
settings or time slots.

o For finer time discretization of the planning period the model may
not be solved to optimality with a solver due to its combinatorial
nature.

o Feasibility to implement HEMS on a low-cost computer.
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