Trust is good – optimal control tours are better! ¹

Elmar Swarat & Thomas Schlechte

EWG POR Workshop

Berlin, 2.11.2020

¹Доверяй, но проверяй! [Lenin(1914)]

Outline

2 What & Why?

3

ZIB Spin-Off LBW since 2000

Mission

Development of high performance mathematical optimization modules for planning systems in mass transit, rail, and air transport.

Zuse Institute Berlin

(Public & Private) Toll-Team

Offense Line

- QB: Thomas Schlechte (LBW)
- Center: Elmar Swarat (ZIB)
- Tackle: Markus Reuther (LBW)
- Tackle: Christoph Auerbach (BAG)
- Guard: Ivanka Peneva (IVU)
- Running Back: Gert Schneider (BAG)
- Full Back: Ralf Borndörfer (ZIB)
- Tight End: Christof Schulz (LBW)
- Tight End: Torsten Klug (LBW)
- Wide Receiver: Stephan Schwartz (ZIB)
- Wide Receiver: Laura Stumpf (IVU)

The German Toll System for Trucks (> 7.5t)

Figure: Map of the problematique (Muse 2006), signs until 2015, from https://commons.wikimedia.org

The German Toll System for Trucks (> 7.5t)

Some Numbers

- $\geq 50.000 km$ federal highway
- \geq 3500 terminals in Germany for manual booking
- ≥ 900 gantries & pillars for automatic control
- ≥ 500 inspectors for mobile (and stationary) control

Two types of users

Figure: On-Board-Units (left) based on GPS & manual booking at terminals (right). Source: BAG & TC

Two types of control resources

Figure: Static automatic (gantries, pillars) and flexible manual (mobile) controls of inspector teams.

Mobile Control

Figure: BAG team controls while overtaking. Source: BMVBS, Bundesbildstelle, BAG

Get the balance right (DepecheMode[1983])

Get the balance right (DepecheMode[1983])

Get the balance right (DepecheMode[1983])

2 What & Why?

13

14

Toll Enforcement Problem

Input

- network & traffic prognosis
- vehicles and inspectors (availabilities & vacation)
- duty and rostering rules

Traffic Prognosis & Duty Graph

Duty & Roster Rules

Duty Construction Rules

- different starting and working times
- valid combinations of depots and sections
- inspector availabilities (days & times)

Roster Construction Rules & Objectives

- minimum rest time between duties
- $\bullet\,$ at most n days of work
- at least m days free
- respect minimal and maximal total working time
- respect maximal number late duties
- avoid different starting times

• ...

Toll Enforcement Problem

Input

- network & traffic prognosis
- vehicles and inspectors (availabilities & vacation)
- duty and rostering rules

Output

- vehicle tours for each day
- inspector duties for each day
- $\bullet\,$ roster for complete month

Toll Enforcement Problem

Input

- network & traffic prognosis
- vehicles and inspectors (availabilities & vacation)
- duty and rostering rules

Output

- vehicle tours for each day
- inspector duties for each day
- $\bullet\,$ roster for complete month
- $\fbox{\ }$ R. Borndörfer, Guillaume Sagnol, T.S., Elmar Swarat:

Optimal duty rostering for toll enforcement inspectors,

Annals of Operations Research volume 252 (2017)

Roster Solution

<u>.</u>	01.01.2015 (Do)	02.01.2015 (Fr)	03.01.2015 (5a)	04.01.2015 (So)	05.01.2015 (Mo)	06.01.2015 (Dij	07.01.2015 (MI)	08.01.2015 (Do)	09.01.2015 (Fr)	10.01.2015 (Sa)	11.01.2015 (So)	12.01.2015 (Mo)	13.01.2015 (Di)	14.01
11225	Abw(Frei)	Abw(Frei)	Abw(Frei)	Abw(Frei)	LL00	1959	1054	11.09	18.59	Frei	Frei	11.09	11.69	
11211	Abw(frei)	Abw(Frei)	Abw[Frei]	Abw(Frei)	19559 LLUBO	1955 11.00	1959	18.59	38.59	Frei	Frei	1955	1959	
11310	Abs(frei)	Abw(Frei)	Abw(Frei)	Abse(Frei)	1459 66.00	1455	1455	3459 8880 96:08	Frei	Frei	Ind	1455	1455	96.0
11296	Abs(frei)	Alw(Frei)	Abw(Fre0	Abse(Frei)	Abse(Freib	Abw(frei)	Alm(frei)	Abw(Frei)	Abw(Fre0	Abse(Freit)	Abse(Frei)	1459 8319 85:00	1453	85.0
C 11189	Aira(Frei)	18.55	Frei	Frei	11.05	1141	15.55	15.55	11.00	Frei	Frei	57.59 65.49	57.59 69.60	1
11168	Aire(frei)	Abw(Fred)	Abw(Frei)	Abse[Frei]	19.69	19.69	18.59	16.59	11.00	Abw(Frei)	Abw(Frei)	17,59 01.00	01.00	1
11281	Abs(frei)	Abw(FreD	Abw(Fr=0	Abse(Frei)	87/04	07/04	07.89	07.09	67.00	Tret	free	07/04	35:59	62
11267	Abs(frid)	00.04	Frei	Frei	87/04	07/04	03.69	07.09	67.00	fret	frei	07/04	03,69	67
11253	Mix(frid)	Abw(Fred)	Abw[Fre0	Abw(Frei)	Abac(Evel)	86.00	1655	1655	3455	15.00	Frei	Frei	1455	96.0
11239	Alos(Feel)	Abw(Frei)	Abw(Frei)	Abw(Frei)	Abac(Frei)	1455	84,00	06/04	06.00	05.00	Frei	Mos(feel)	84,00	96.0
8 11197	Abw(first)	Abw(Feet)	Abw[Frei]	Abw(Frei)	Frei	1455	1453	1453	14.53	Frei	Frei	1459	1453	96.0
×11324	Abw(Prid)	Abw(Trel)	Abw[FreD	Abse(Frei)	11/00	1955	10:54	18.59	31.59	Abset Freitig	Abse(frei)	Abs(feel)	02,08	63
11338	Abs(frid)	Abw(Fred)	Abw[Fre0	Abw(Frei)	11/00	19654	10.54	18.59	38.59	Asset Freeb	Absectives)	07:04	03,68	63:
8 ₁₁₁₂₆	Abs(feet)	Abw(Frei)	Frei	13:03	99.48	57.55	55.40	1704	13/44	Frei	Frei	12.00	17.69	
11140	Abw(Feri)	38.59	Frei	Frei	1439	1455	1453	1453	Abw[Frei]	Abw(Frei)	Frei	12:00	12:00	
11154	Abw(Frid)	Abw(Feel)	Frei	Frei	1455	1455	1453	1453	Abw[Frei]	Abw(Freit)	16:00	18/55	35.00	- 1
10900	Abw(frei)	Abw(Frei)	Abw[fre0	Abw(Prel)	1459 1933	1455 8001 8600	1455 0101	1459 0103	3459 06:00	Frei	frei	1459 81001	1459 0304 8500	06.0
10886	Abw(Frei)	Abw(Frei)	Abw[Fre0	Abw(Frei)	1855 1997	1455 6301	1455 0101	1459 6163	3459	Frei	hel	1459	1459 0303	06.0
8						1455	1455	1655	3459				1455	

19

20

$$\begin{split} &(\text{Roster Flow}) \\ &\sum_{a \in \delta^{a(v)}} x_{am} - \sum_{a \in \delta^{a(u)}(v)} x_{am} = 0, \qquad \forall m \in M, \forall d \in D \\ &\sum_{a \in A} b_{ar} x_{am} \leq u_{rm}, \qquad \forall m \in M, \forall r \in R \\ &\sum_{a \in I} x_{am} \leq |I| - 1, \ \forall I \in \mathcal{I}, \forall m \in M \\ &x_{am} \in \{0, 1\}, \quad \forall a \in A, \forall m \in M \end{split}$$

(Coupling Constraints) $n_d z_d - \sum_{m \in M} \sum_{a \in \delta^{\text{in}}(d) \in A} x_{am} = 0, \, \forall d \in D$

(Coupling Constraints) $n_d z_d - \sum_{m \in M} \sum_{a \in \delta^{\text{in}}(d) \in A} x_{am} = 0, \, \forall d \in D$

Solution Approach in a Nutshell

21

Solution Approach in a Nutshell

Solution Approach in a Nutshell

Solution Approach in a Nutshell profitub

opt

 \overrightarrow{lb}

Performance Boosters - Buzzwords only

Primal Side - Generate Solutions

- DEX (Lin-Kernighan heuristic)
- Coarse-To-Fine column generation heuristic

Dual Side - Improve LP Bound

- strong coupling constraints
- integer rounding for binary knapsacks

The Deployment

Research Stage 2010-2013

- $\bullet\,$ model development
- prototype software
- standard model

The Deployment

Research Stage 2010-2013

- model development
- prototype software
- $\bullet\,$ standard model

Deployment Stage 2013-2014

- start with 2 regions
- successive rollout in Germany (> 20 regions)
- special cases & more features & more data

The Deployment

Research Stage 2010-2013

- model development
- prototype software
- $\bullet\,$ standard model

Deployment Stage 2013-2014

- start with 2 regions
- successive rollout in Germany (> 20 regions)
- special cases & more features & more data

since then in production

• more than 5 * 12 * 24 > 1400 **MIP**ed schedules

Reference Solution

Map any available technical solution to your model solution (hard) or adapt the objective function such that most is reproduced (soft).

Reference Solution

Map any available technical solution to your model solution (hard) or adapt the objective function such that most is reproduced (soft).

• discover untold degrees of freedom (vars)

Reference Solution

Map any available technical solution to your model solution (hard) or adapt the objective function such that most is reproduced (soft).

- discover untold degrees of freedom (vars)
- \bullet discover hidden relaxations of the rules (cons)

Reference Solution

Map any available technical solution to your model solution (hard) or adapt the objective function such that most is reproduced (soft).

- discover untold degrees of freedom (vars)
- \bullet discover hidden relaxations of the rules (cons)
- ${\sc o}$ discover desired properties of the solution (obj)

The game of buck passing

Some inspectors have temporal restrictions such that other inspectors have a higher probability to get critical duties.

The game of buck passing

Some inspectors have temporal restrictions such that other inspectors have a higher probability to get critical duties.

• consider preferences of inspectors

The game of buck passing

Some inspectors have temporal restrictions such that other inspectors have a higher probability to get critical duties.

- consider preferences of inspectors
- two stage optimization approach

The game of buck passing

Some inspectors have temporal restrictions such that other inspectors have a higher probability to get critical duties.

- consider preferences of inspectors
- two stage optimization approach

X = solveModel(M, considerRestrictions = false)

The game of buck passing

Some inspectors have temporal restrictions such that other inspectors have a higher probability to get critical duties.

- consider preferences of inspectors
- two stage optimization approach

X = solveModel(M, considerRestrictions = false)

M = fixDutiesNotViolatingRestrictions(X)

The game of buck passing

Some inspectors have temporal restrictions such that other inspectors have a higher probability to get critical duties.

- consider preferences of inspectors
- two stage optimization approach

X = solveModel(M, considerRestrictions = false)

- M = fixDutiesNotViolatingRestrictions(X)
- SolveModel(M, considerRestrictions = true)

The game of buck passing

Some inspectors have temporal restrictions such that other inspectors have a higher probability to get critical duties.

- consider preferences of inspectors
- two stage optimization approach
 - X = solveModel(M, considerRestrictions = false)
 - M = fixDutiesNotViolatingRestrictions(X)
 - SolveModel(M, considerRestrictions = true)

Keys to successful deployment

• Find a common language

- Find a common language
- ٢
- Imagine you are $p, \forall p \in \mathsf{PLAYERS}$

Keys to successful deployment

• Concentrate on standardization

- Find a common language
- ٩
- Imagine you are $p, \forall p \in \mathsf{PLAYERS}$

- Build a powerful flexible mathematical model (MIP)
- Concentrate on standardization

- Find a common language
- ٩
- Imagine you are $p, \forall p \in \mathsf{PLAYERS}$

- Build a powerful flexible mathematical model (MIP)
- Concentrate on standardization
- Enter quickly and stay in the feedback loop
- Find a common language
- ٢
- Imagine you are $p, \forall p \in \mathsf{PLAYERS}$

- Accept moving targets and new wishes on the journey
- Build a powerful flexible mathematical model (MIP)
- Concentrate on standardization
- Enter quickly and stay in the feedback loop
- Find a common language
- ٩
- Imagine you are $p, \forall p \in \texttt{PLAYERS}$

Keys to successful deployment

- Accept moving targets and new wishes on the journey
- Build a powerful flexible mathematical model (MIP)
- Concentrate on standardization
- Do tackle details & special cases
- Enter quickly and stay in the feedback loop
- Find a common language

۲

• Imagine you are $p, \forall p \in \mathsf{PLAYERS}$

Keys to successful deployment

- Accept moving targets and new wishes on the journey
- Build a powerful flexible mathematical model (MIP)
- Concentrate on standardization
- Do tackle details & special cases
- Enter quickly and stay in the feedback loop
- Find a common language
- ٩
- Imagine you are $p, \forall p \in \mathsf{PLAYERS}$
- Use your own tools!

Because I like to practice what I preach [Strangelove, DeMo 1987])

Thanks for your Attention & Patience!

