ORAHS2024
Abstract Submission

298. Enhancing Scheduling Efficiency in Interventional Radiology through Optimization and Predictive Process Monitoring

Contributed abstract in session TA-5: Operating Room Scheduling /1, stream Regular talks.

Tuesday, 9:00-10:30
Room: Room S6

Authors (first author is the speaker)

1. Massimiliano Ronzani
Fondazione Bruno Kessler
2. Matteo Di Cunzolo
Dipartimento di Informatica, Università degli Studi di Torino
3. Roberto Aringhieri
Dipartimento di Informatica, Università degli Studi di Torino
4. Chiara Di Francescomarino
Fondazione Bruno Kessler
5. Chiara Ghidini
Process and Data Intelligence, Fondazione Bruno Kessler
6. Alberto Guastalla
Dipartimento di Informatica, Università degli Studi di Torino
7. Emilio Sulis
Computer Science Dep., University of Torino

Abstract

Interventional Radiology (IR) is a growing medical field using imaging technologies for minimally invasive procedures. Despite similarities to operating rooms, IR poses unique management challenges seldom addressed in literature. This study introduces a novel approach, integrating optimization and predictive process monitoring (PPM) models, to address specific IR complexities. Results demonstrate improved scheduling efficiency and patient throughput compared to traditional methods, highlighting the effectiveness of PPM integration.

Keywords

Status: accepted


Back to the list of papers