EURO 2024 Copenhagen
Abstract Submission

EURO-Online login

2281. ML-based Adaptive Risk Parameters Tuning for Robust Optimization

Invited abstract in session TB-35: Risk Averse and Contextual Stochastic Optimization, stream Stochastic, Robust and Distributionally Robust Optimization.

Tuesday, 10:30-12:00
Room: 44 (building: 303A)

Authors (first author is the speaker)

1. Emanuele Pizzari
Istituto di analisi dei sistemi ed informatica "Antonio Ruberti" (IASI), Consiglio Nazionale delle Ricerche (CNR)
2. Marco Boresta
Istituto di analisi dei sistemi ed informatica "Antonio Ruberti" (IASI), Consiglio Nazionale delle Ricerche (CNR)
3. Diego Maria Pinto
Istituto di Analisi dei Sistemi ed Informatica "Antonio Ruberti", Consiglio Nazionale delle Ricerche

Abstract

This paper introduces a novel approach that integrates Robust Optimization with Machine Learning (ML) to dynamically estimate optimal risk parameter' values for uncertain environments. By leveraging historical data and engineering informative features, we train an ML model to predict risk protection values tailored to each instance's characteristics. Unlike static approaches, our method offers adaptability and enhances decision-making in uncertain domains. Through experimentation, we demonstrate the efficacy of our approach in improving robustness and performance.

Keywords

Status: accepted


Back to the list of papers