EURO 2024 Copenhagen
Abstract Submission

EURO-Online login

1626. Parameter-free FISTA

Invited abstract in session MB-34: Optimization and learning for data science and imaging (Part II), stream Advances in large scale nonlinear optimization.

Monday, 10:30-12:00
Room: 43 (building: 303A)

Authors (first author is the speaker)

1. Luca Calatroni
I3S - CNRS/Université Côte d'Azur
2. Jean-François Aujol
IMB, Université de Bordeaux
3. Charles Dossal
Université Bordeaux 1
4. Hippolyte Labarrière
Università di Genova
5. Aude Rondepierre
Département Génie Mathématiques et Modélisation, INSA Toulouse

Abstract

We propose an adaptive backtracking and restarting strategy to automate a variant of the Fast Iterative Soft-Thresholding Algorithm (FISTA) for structured optimization problems. Under a generalized (non-restrictive) strong convexity growth condition, we prove the linear convergence of function values generated by the resulting parameter-free algorithm. The algorithm's performance and versatility are demonstrated on exemplar imaging problems.

Keywords

Status: accepted


Back to the list of papers