Some new attemps to deal with integer multicommodity flow routing problems

E. Gourdin ${ }^{1}$
Orange Labs R\&D, Issy-les-Moulineaux, France
eric.gourdin@orange-ftgroup.com

1 Introduction

Consider a undirected capacitated graph $G=(V, E, c)$ where $c_{e}>0$ is the capacity of edge $e \in E$ and a set of commodities indexed by $K=\{1, \ldots, p\}$, where each commodity $k \in K$ is defined by two terminal nodes s^{k} and t^{k} and by an amount of demand $d^{k}>0$. Denote by \mathcal{P}^{k} the set of paths joining s^{k} and t^{k} and let $\mathcal{P}=\cup_{k=1}^{p} \mathcal{P}^{k}$. The multicommodity flow problem consists in defining a feasible way to route each commodity k from s^{k} to t^{k}. Using flow variables f_{p} denoting the amount of demand routed on path p, the basic set of constraints to satisfy are the following:

$$
\begin{gather*}
\sum_{p \in \mathcal{P}^{k}} f_{p} \geq d^{k}, \quad k \in K \tag{1}\\
\sum_{p \in \mathcal{P}: e \in p} f_{p} \leq c_{e}, e \in E \tag{2}
\end{gather*}
$$

Constraints (1) impose that the demand associated with each commodity is fully routed and constraints (2) impose that the resulting flow on each edge does not exceed the capacity of that edge.

Multicommodity flow problems have been considerably studied in a wide variety of contexts and with many different approaches. In the continuous case ($f_{p} \geq 0$), the demand of each commodity can be routed on as many paths as required by a given objective function. Many efforts have been devoted to solve efficiently large-scale instances of the continuous multicommodity flow problem with various types of objective functions [12]: one of the most frequent objective function consists in minimizing an overall routing cost, a unit routing $\operatorname{cost} c_{e}^{k}$ being associated with each commodity k routed on edge e. The well-know non-linear convex Kleinrock function is also very often used to model all the situations where the cost of filling an edge become exponentially high when the traffic on that edge approaches its capacity. Note that similar effects can be obtained by piece-wise linear convex cost functions [8]. The Maximum Concurrent Flow problem which consists in finding the maximum ratio of common demand that can be multi-routed (change d^{k} by λd^{k} in the first set of constraints and maximize λ), is an example of "difficult" continuous problem [2], [14]. Other types of max-min objectives have also been considered.

Several "integer" multicommodity flow problems have also been investiguated in the past. In the all-ornothing multicommodity flow problem, the routing variables are still continuous, but each commodity must be either completely satisfied or not routed at all and the objective is to maximize the number of commodities completely satisfied [4]. In the so-called integer multicommodity flow problem, an integrality constraint is added on the flow variables $\left(f_{p} \in \mathbf{N}\right)$ imposing that only integral chunks of demands can be routed in the network [3]. In the unsplittable flow problems, only one path can be used for each commodity [1] [7] [11]. Setting each demand to a common integer value p and setting each capacity to 1 , this problem reduces to the well-studied edge-disjoint paths problem [5] [13].

Many results have been derived for all these kinds of problems. In particular, the extention of the max-flow/min-cut property to multicommodity flows has been deeply investiguated [6]. These weak duality properties have inspired many approximation algorithms [10].

In this paper, we investiguate some decomposition approaches for solving integer multicommodity flow problems. The impact of the choice of one among several standard linear programming formulations have already analyzed [9]. However, in some cases, it might be usefull to combine several types of formulations into a single mixed integer model. Another approach consists in using the multi-cut informations provided by the continuous relaxation to drive a partitioning of the graph. The initial integer multicommodity flow problem can then be decomposed into several problems of smaller size, each one being defined in one of the resulting subgraphs. We analyze and apply these two approaches on several integer multicommodity flow problems with a special focus on max-min problems, such as:

$$
\begin{array}{ccc}
\max z & \\
\text { s.t. : } & \sum_{p \in \mathcal{P}^{k}} x_{p}^{k} \geq 1, & k \in K, \\
& \sum_{k \in K} \sum_{p \in \mathcal{P}^{k}: e \in p} d^{k} x_{p}^{k}+z \leq c_{e}, e \in E, \\
& x_{p}^{k} \in\{0,1\} . \tag{6}
\end{array}
$$

Here, the binary variables x_{p}^{k} are used to indicate whether the commodity k is routed on path p or not. Exact and heuristic solution methods will be described and analyzed. Preliminary computational results will be provided.

References

1. M. Belaidouni, W. Ben-Ameur (2007). On the minimum cost multiple-source unsplittableflow problem. RAIROOperations Research 41(3), 253-274.
2. D. Bienstock (2001). Potential Function Methods for Approximatevely Solving Linear Programs: Theory and Practice. CORE Lecture Series Monograph.
3. L. Brunetta, M. Conforti, M. Fischetti (2000). A polyhedral Approach to an Integer Multicommodity Flow Problem. Discrete Applied Mathematics 101, 13-36.
4. C. Chekuri, S. Khanna, F.B. Shepherd (2004). The All-or-Nothing Multicommodity Flow Problem. Proc. of STOC'04.
5. C. Chekuri, S. Khanna (2003). Edge disjoint paths revisited. Proc. of SODA’03, 628-637.
6. M.-C. Costa, L. Létocart, F. Roupin (2005). Minimal multicut and maximal integer multiflow: A survey. European Journal of Operational Research 162, 55-69.
7. Y. Dinitz, N. Garg, M.X. Goemans (1999). On the single-source unsplittable flow problem. Combinatorica 19(1), 1-25.
8. B. Fortz, M. Thorup (2000). Internet Traffic Engineering by optimizing OSPF weights. Infocom 2000.
9. K.L. Jones, I.J. Lustig, J.M. Farvolden, W.B. Powell (1993). Multicommodity network flows: The impact of formulation on decomposition. Mathematical Programming 62, 95-117.
10. T. Leighton, S. Rao (1999). Multicommodity max-flow min-cut theorems and their use in designing approximation algorithms. JACM 46(6), 215-245.
11. K. Park, S. Kang, S. Park (1996). An Integer Programming Approach to the Bandwidth Packing Problem. Management Science, 42(9), 1277-1291.
12. A. Ouorou, P. Mahey, J.-Ph. Vial (2000). A survey of algorithms for convex multicommodity flow problems. Management Science, 46(1), 126-147.
13. N. Robertson, P.D. Seymour (1995). Graph Minors XIII. The Disjoint Paths Problem. Journal of Comb. Theory, Series B 63, 65-110.
14. F. Sharokhi, D.M. Matula (1991). On Solving Large Maximum Concurrent Flow Problems. Journal of the ACM, 37, 318-334.
