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1 Introduction

Consider a undirected capacitated graph G = (V,E, c) where ce > 0 is the capacity of edge e ∈ E and a
set of commodities indexed by K = {1, . . . , p}, where each commodity k ∈ K is defined by two terminal
nodes sk and tk and by an amount of demand dk > 0. Denote by Pk the set of paths joining sk and tk

and let P = ∪p
k=1Pk. The multicommodity flow problem consists in defining a feasible way to route each

commodity k from sk to tk. Using flow variables fp denoting the amount of demand routed on path p, the
basic set of constraints to satisfy are the following:∑

p∈Pk

fp ≥ dk, k ∈ K, (1)∑
p∈P:e∈p

fp ≤ ce, e ∈ E. (2)

Constraints (1) impose that the demand associated with each commodity is fully routed and constraints (2)
impose that the resulting flow on each edge does not exceed the capacity of that edge.

Multicommodity flow problems have been considerably studied in a wide variety of contexts and with many
different approaches. In the continuous case (fp ≥ 0), the demand of each commodity can be routed on as
many paths as required by a given objective function. Many efforts have been devoted to solve efficiently
large-scale instances of the continuous multicommodity flow problem with various types of objective func-
tions [12]: one of the most frequent objective function consists in minimizing an overall routing cost, a
unit routing cost cke being associated with each commodity k routed on edge e. The well-know non-linear
convex Kleinrock function is also very often used to model all the situations where the cost of filling an edge
become exponentially high when the traffic on that edge approaches its capacity. Note that similar effects
can be obtained by piece-wise linear convex cost functions [8]. The Maximum Concurrent Flow problem
which consists in finding the maximum ratio of common demand that can be multi-routed (change dk by
λdk in the first set of constraints and maximize λ), is an example of "difficult" continuous problem [2], [14].
Other types of max-min objectives have also been considered.

Several "integer" multicommodity flow problems have also been investiguated in the past. In the all-or-
nothing multicommodity flow problem, the routing variables are still continuous, but each commodity must
be either completely satisfied or not routed at all and the objective is to maximize the number of commodi-
ties completely satisfied [4]. In the so-called integer multicommodity flow problem, an integrality constraint
is added on the flow variables (fp ∈ IN) imposing that only integral chunks of demands can be routed in the
network [3]. In the unsplittable flow problems, only one path can be used for each commodity [1] [7] [11].
Setting each demand to a common integer value p and setting each capacity to 1, this problem reduces to
the well-studied edge-disjoint paths problem [5] [13].



Many results have been derived for all these kinds of problems. In particular, the extention of the max-
flow/min-cut property to multicommodity flows has been deeply investiguated [6]. These weak duality
properties have inspired many approximation algorithms [10].

In this paper, we investiguate some decomposition approaches for solving integer multicommodity flow
problems. The impact of the choice of one among several standard linear programming formulations have
already analyzed [9]. However, in some cases, it might be usefull to combine several types of formulations
into a single mixed integer model. Another approach consists in using the multi-cut informations provided
by the continuous relaxation to drive a partitioning of the graph. The initial integer multicommodity flow
problem can then be decomposed into several problems of smaller size, each one being defined in one of the
resulting subgraphs. We analyze and apply these two approaches on several integer multicommodity flow
problems with a special focus on max-min problems, such as:

max z (3)
s.t. :

∑
p∈Pk

xk
p ≥ 1, k ∈ K, (4)∑

k∈K

∑
p∈Pk:e∈p

dkxk
p + z ≤ ce, e ∈ E, (5)

xk
p ∈ {0, 1}. (6)

Here, the binary variables xk
p are used to indicate whether the commodity k is routed on path p or not. Exact

and heuristic solution methods will be described and analyzed. Preliminary computational results will be
provided.
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