The m-Capacitated Peripatetic Salesman Problem

E. Duchenne ${ }^{1}$, G. Laporte ${ }^{2}$, and F. Semet ${ }^{1}$
${ }^{1}$ LAMIH, Université de Valenciennes et du Hainaut-Cambrésis, France
\{eric.duchenne;frederic.semet\}@univ-valenciennes.fr
${ }^{2}$ CIRRELT and Canada Research Chair in Distribution Management, HEC Montréal, Canada
gilbert@crt.umontreal.ca

1 Introduction

The undirected m-Capacitated Peripatetic Salesman Problem (m-CPSP) is defined on a complete simple graph $G=(V, E)$, where $V=\{1, \ldots, n\}$ is the vertex set and $E=\{e=(i, j): i, j \in V, i<j\}$ is the edge set. With each edge e is associated a cost c_{e} and a capacity C_{e}. The m-CPSP consists of determining m Hamiltonian cycles of least total cost on G such that all edges $e \in E$ are used less than C_{e} times. The m-CPSP is NP-hard and reduces to the m-Peripatetic Salesman Problem (m-PSP) when $C_{e}=1$ for all $e \in E$. To avoid trivial or infeasible cases we assume that $n \geq 6$ and $m \leq\lfloor(n-1) / 2\rfloor$. To our best knowledge, this is the first study on the m-CPSP. In his seminal paper on the m-PSP, Krarup [5] presented a simple procedure to determine an upper bound on the optimal m-PSP solution value. This procedure can easily be generalized in order to find an upper bound \bar{z} for the m-CPSP. Initially $F=\emptyset$ and $\bar{z}=0$. The procedure executes the following iteration m times: solve a TSP on $E \backslash F$ and let z be its optimal value; set $\bar{z}:=\bar{z}+z, C_{e}=C_{e}-1$ for all e belonging to the TSP solution and $F:=F \cup\left\{e \in E: C_{e}=0\right\}$.

Applications of the m-CPSP arise naturally in the design of patrol routes, of automated guided vehicle (AGV) loops, and of hazardous material (hazmat) transportation routes. An example of the first application for the m-PSP is provided by Wolfler Calvo and Cordone [8] who have analyzed the design of patrol routes for security agents in charge of checking several locations on consecutive nights. In order to provide enhanced security to the patrolmen, a set of several partially edge disjoint routes are used. A similar example is the design of military patrol routes. In the second application the aim is to design several AGV loops serving manufacturing cells in a factory. Several configurations are available for such loops (Asef-Vaziri and Laporte [1]). Creating several partially edge disjoint loops with some cells (vertices) in common avoids congestion and accidents engendered by track sharing, while providing communication between the loops (Blazewicz et al. [2], Venkataramanan and Wilson [7]). The m-CPSP corresponds to the case where all loops go through all vertices. In the hazmat application the aim is to create m Hamiltonian paths through several locations. In order to provide a fair distribution of risk, these paths should ideally have very few edges in common (Gopalan, Batta, and Karwan [4], Lindner-Dutton, Batta, and Karwan [6]). The path version of the m-CPSP applies to the case of m edge disjoint paths.

Duchenne, Laporte and Semet [3] have formulated the m-PSP by means of a 3-index formulation which can be extended to the m-CPSP. In the presentation we will describe this 3-index model as well as a new model using edge-edge variables. We will also present some valid inequalities for these models and two algorithms based on these formulations followed by computational results.

References

1. A. Asef-Vaziri, and G. Laporte (2005). Loop Based Facility Planning and Material Handling. European Journal of Operational Research, 164, 1-11.
2. J. Blazewicz, R.E. Burkard, G. Finke, and G.J. Woeginger (1994). Vehicle Scheduling in Two-Cycle Flexible Manufactoring Systems. Mathematical and Computer Modelling, (20), 19-31.
3. É Duchenne, G. Laporte, and F. Semet (2005). Branch-and-cut algorithms for the undirected m-Peripatetic Salesman Problem. European Journal of Operational Research, 162, 700-712.
4. R. Gopalan, R. Batta, and M.H. Karwan (1990). The Equity Constrained Shortest Path Problem. Computers \& Operations Research, 17, 297-307.
5. J. Krarup (1975). The Peripatetic Salesman and Some Related Unsolved Problems. Combinatorial Programming, Methods and Applications. B. Roy, ed, Reidel, Dordrecht, 173-178.
6. L. Lindner-Dutton, R. Batta, and M.H. Karwan (1991). Equitable Sequencing of a Given Set of Hazardous Materials Shipments. Transportation Science, 25, 124-137.
7. M.A. Venkataramanan, and K.A. Wilson (1991). A Branch-and-Bound Algorithm for Flow-Path Design of Automated Guided Vehicle Systems. Naval Research Logistics, 38, 431-445.
8. R. Wolfler Calvo, and R. Cordone (2003). A Heuristic Approach to the Overnight Security Service Problem. Computers \& Operations Research, 30, 1269-1287.
