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Abstract

Let G = (V,E) be an undirected graph with n = |V | nodes and m = |E| edges. Assume without loss of
generality that G is simple, that is without loops and multiple edges. An elementary cycle is a connected
subset of edges such that all incident nodes have degree 2. A cycle is a subset of edges such that every node
of V is incident to an even number of edges of the cycle. Cycles can be viewed as the (possibly empty) union
of edge-disjoint elementary cycles. The composition of two cycles is defined as the symmetric difference of
the corresponding edge sets. Each cycle C can be represented by an edge incidence vector χC in {0, 1}m,
where χC(e) = 1 precisely when e ∈ C. Associated with any undirected graph G there is a vector space
overGF (2), called the cycle space, consisting of the edge incidence vectors of all cycles, including the null
cycle. If G has p connected components, the dimension of this space is ν(G) = m− n+ p. A maximal set
of linearly independent cycles is called a cycle basis.

We consider the following combinatorial optimization problem related to cycle bases, known as the mini-
mum cycle basis problem.

MIN CB: Given a connected graphGwith a nonnegative weightw(e) assigned to each edge e ∈ E,
find a cycle basis B of minimum total weight, i.e., which minimizes w(B) =

∑m−n+1
i=1 w(bi),

where w(bi) is the sum of the weights of all edges in cycle bi.

Short cycle bases are of interest in a variety of fields including, for instance, electric networks, structural
engineering, chemistry and biochemistry, and surface reconstruction from point clouds.

MIN CB has been attracting considerable attention. The first polynomial-time algorithm was proposed by
Horton [1] and has a O(m3n) time complexity. The approach proceeds into two steps. First Horton notices
that a subset of O(mn) candidate cycles contains a minimum cycle basis. This set of candidate cycles,
denoted by H, is obtained by considering for each node v and each edge e of G the cycle consisting of the
edge e and of the two shortest paths from v to the two endpoints of e. Since H turns out to be a matroid, a
minimum cycle basis can then be found by selecting the ν = m− n+ 1 shortest linearly independent can-
didates cycles, by using Gaussian elimination. Exploiting fast matrix multiplication, the overall algorithm
complexity can be reduced to O(mωn) [2], where ω is the exponent of fast matrix multiplication.

A different type of approach was proposed by de Pina [3] and improved in [5]. In these algorithms the cycles
to be included in a minimum cycle basis are determined sequentially. Consider any spanning tree T ofG, let
e1, . . . , eN be the edges ofE\T and eN+1, . . . , em the co-tree edges, both in some arbitrary but fixed order.



Any cycle of G can be viewed as a restricted incidence vector in {0, 1}N and it is easy to verify that linear
independence of the restricted vectors is equivalent to linear independence of the full incidence vectors.
Suppose that the cycles C1, . . . , Ci of a minimum cycle basis have already be determined. To determine
cycle Ci+1, we first compute a non-zero support vector Si+1 ∈ {0, 1}N that is orthogonal to the linear
subspace generated by the cycles computed so far, namely such that < Cj , Si+1 >= 0 for all 1 ≤ j ≤ i.
Then cycle Ci+1 is the shortest cycle C in the graph G such that < C,Si+1 >= 1. Since Ci+1 is not
orthogonal to Si+1, Ci+1 is linear independent w.r.t. C1, . . . , Ci. The optimality of the resulting cycle basis
is guaranteed by the fact that such a shortest cycle C is selected at each step. The overall complexity of the
variant presented in [5] is O(m2n+mn2 log n).

In a third type of algorithm described in [7], only the Horton cycles that contain a node of a close-to-
minimum feedback vertex set are considered. Although this problem of finding a minimum set of nodes
whose deletion makes a graph acyclic is NP-hard, it can be approximated in polynomial time within a
factor 2. A simple way to extract a minimum cycle basis from the resulting set of candidate cycles then
leads to an overall O(m2n +mn2) complexity, which can be further reduced to O(m2n/ log(n) +mn2)
by using a bit-packing trick.

Surprisingly very little attention has been devoted so far to evaluate the actual performance of these algo-
rithms and we are not aware of any computational comparison carried out on a set of benchmark instances.

In this work we revisit Horton’s and de Pina’s approaches and propose a hybrid algorithm which has
O(m2n/ log(n)) worst-case complexity and outperforms in practice previous algorithms on a variety of
instances. On the one hand, we show that the size of Horton’s set of candidate cyclesH can be substantially
reduced. More precisely, we describe simple and efficient procedures to identify candidate cycles inH that
can be deleted since they can be obtained by composing two shorter Horton cycles or k shorter Horton cy-
cles according to a wheel structure, for some integer k ≥ 3. Interestingly, although the resulting reduced set
H′ is still of cardinality O(mn), the incidence vectors of these cycles are very sparse: they contain at most
mn ones. Similarly to Horton’s algorithm, the candidate cycles inH′ are then considered in nondecreasing
order of their weight. To test whether a candidate cycle at hand is linearly independent from those that have
been previously selected, we propose an improved linear independence test à la de Pina. The idea is to
reduce the overall computational load by progressively and appropriately building the spanning tree whose
co-tree edges determine a basis of the linear subspace that is orthogonal to the linear subspace generated by
the cycles selected so far.
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