Solving the \boldsymbol{p}-median problem via a radius formulation

S. García ${ }^{1}$, M. Labbé ${ }^{2}$ and A. Marín ${ }^{3}$
${ }^{1}$ Departamento de Estadística, Universidad Carlos III de Madrid, Spain sergio.garcia@uc3m.es
${ }^{2}$ Département d'Informatique, Université Libre de Bruxelles, Belgium
mlabbe@ulb.ac.be
${ }^{3}$ Departamento de Estadística e Investigación Operativa, Universidad de Murcia, Spain amarin@um.es

Given a set of nodes, the p-median problem consists of determining p nodes (called median nodes) where to locate p facilities and allocate the other nodes to these ones in such a way that total distance be minimal.

To overcome the difficulties of solving large problems, different techniques can be found in the literature: set partitioning formulation and column generation ([2]), Lagrangian relaxation reduced costs ([3]) or branch-and-cut-and price ([1]) are just three examples.

In this paper, a radius formulation is proposed to solve the problem: for each potential facility, the distances to the other nodes are ordered increasingly. Then, the p-median problem is formulated by using a family of two-index variables which, for each node, state how far is the open facility the node has been allocated to.

The problem is solved with a branch-and-cut-and-price technique, whose advantage is that the pricing can be done in a very easy way, fastening so the resolution of the problem. A computational study will show the performance of this approach.

References

1. P. Avella, A. Sassano and I. Vasil'ev (2007). Computational study of large-scale p-median problems. Mathematical Programming, 109, 89-114.
2. R.S. Garfinkel, A.W. Neebe and M.R. Rao (1974). An algorithm for the m-median plant location problem. Transportation Science, 25, 183-187.
3. O. Briand and D. Naddef (2004). The optimal diversity management problem. Operations Research, 52 (4), 515-526.
